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Abstract—The paper presents our attempt to define the concept an inspiration for the considerations presented in thenéurt
of factorization within the Dempster-Shafer theory of evidence. parts of this paper. Here, we will consider a probability
In the same way as in probability theory, the introduced conept measurer on a finite space
can support procedures for efficient multidimensional modé
construction and processing. The main result of this paperd a Xy=X; xXyx...xX
factorization lemma describing, in the same way as in probability ™
theory, the relationship between factorization and condional e an additive set function
independence.
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dence, multidimensional model. ) ]
for which 7(Xy) = 1. For any K C N, symbol 7% will

[. INTRODUCTION denote its respective marginal measure (for eBca X g):
It is well-known that problems of practice require knowl- K
. | : KB = Y w(4),
edge bases comprising great number of attributes/pregerti -
Therefore, when considering probabilistic or possibdistod- A;(:NB

els one has to cope with distributions of hundreds or everL_ hi babil b
thousands of dimensions. The dimensionality explosiortsstaW ich is a probability measure on subspace

to be almost hopeless when consid_ering_models Qf De_mpster- Xg = X,ex X,

Shafer theory [4], [9], where the basic assignment is notiatpo

function, like distributions in probability/possibilittheories, Let us remark that ford = ¢ we getr!? = 1. Analogous

but a set function. This is why any space-saving technique footation will be used also for projections of points and sets

model representation and/or processing [11] is in Dempsté&oOr a pointz = (z1,2y,...,2,) € Xy its projection into
Shafer theory of such a great importance. subspaceX i will be denoted
Speaking about probability theory, it became widely known i )
= i,1€K )

that a substantial decrease of computational complexity wa

achieved with the help of models taking advantage of the cognd for A C Xy
cept of conditional independence. However, studying piigpe

probabilistic graphical Markov models one can realize that A = {ye Xk : v e A,z =y}
is not the notion ofconditional independencthat makes it
possible to represent these models efficiently. The effigien
is based on dactorization which in probability theory (due
to factorization lemmapresented here as Lemma 1) coincid
with the conditional independence. Going into details, cae
notice that the notion of factorization has been introduiced
several different ways in probability theory. The goal ofsth 7 KUEUM (5) . 1M (5, 1M

Consider a probability measureand three disjoint groups
of variables X = {X;}ick, X = {X;}ier and Xy, =
Xitiem (K, L,M C N, K # 0 # L). We say thatXx and
1, are conditionally independent giveX ; (in probability
measurer) if for all? z € Xxurom

paper is to show that factorization can be exploited also in = qlEUM (LKUMY ] LUM (5| LUM)
Dempster-Shafer theory. Before doing this, we briefly araly
the notion of factorization in probability theory. This property will be denoted by the symb&l UL L | M [r].

In case that\/ = () then we say that groups of variablég,
Il. PROBABILISTIC FACTORIZATION and X, are (uinconditionally) independentwhich is usually
In this section we will introduce a necessary notation antenoted by a simplified notatiod” 1. L [x].
recall several notions from probability theory, which sshas
2As usually, we do not distinguish between a singleton setisnelement,

IThis work was supported by GZR under the grant no. ICC/08/E010, andso = stands also fo{z}, andz!X is the only element fron{z}! /.
201/09/1891, and by BIMT CR under grants 1M0572 and 2C06019. 3Some authors call it marginal independence.



As already mentioned above, the notion of factorization is Recursive factorization: Consider a finite system of
introduced in probability theory in several different wagead nonempty subset¥’;, K,..., K, of a setN. We say that
therefore we will use some adjectives to distinguish thesmfr = recursively factorizes with respect {d<y, Ko, ..., K,.) if
each other. The properties presented further in this seetso for eachi = 2,...,r = (simply) factorizes with respect to the
lemmata and corollaries can either be found in [8] or cagmair (K; U...UK,;_1, K;).
be directly deduced as trivial consequences of the pragzerti
presented there. Remark:Using Corollary 1 iteratively one can get a formula

Simple factorization:Consider two nonempty sef§, L C  expressing the multidimensional meastuté&:"- V£ with the
N. We say thatr factorizes with respect t¢K, L) if there help of its respective margindls

exist two nonnegative functions LLKGULUK, (I)

T

¢:Xg —[0,400) and o :X;, — [0,400), _ HFLKi (lei\(Klu...UKi,l)|x1Kim(K1U...UKi,1))_

such that for eaclr € X the equality =1
So we are getting a trivial assertion saying thatrifre-
ﬁlKUL(x) — ¢,(le) .w(IiL) cursively factorizes with respect t&, Ks, ..., K, then it
also factorizes with respect to this system of subsets. Let
holds true. us stress that recursive factorization is much strongen tha
Lemma 1 (Factorization lemmalet K,L C N be multiple factorization. For example, for recursive faczation
nonempty.w factorizes with respect toK, L) if and only if an analogy to Corollary 2 holds true.
K\L 1L L\K|KNL I[r].
Decomposition:We say that a sequendg,, K, ..., K,
Corollary 1: « factorizes with respect tQi(, L) if and only  meets therunning intersection propertyRIP) if for all i =

if 2....,r there existsj,1 < j < i, such that
ﬂ,lKUL(x) _ 7_‘,lK(IlK) . ﬂ,lKuL(ILL\KLrlKﬂL)’ Ki N (Kl U...U Ki—l) C Kj-

In case of factorization with respect to a sequence of sets
meeting RIP we are getting the strongest type of factonnati

Corollary 2: Let ... be a sequence of probabili . : : . o
y 1,72, 73, - DG A S€q P WNamer, in this case multiple and recursive factorizations
measures each of them factorizing with respect(f L). coincide

If this sequence is convergent then also the limit measure

for all x € Xgur.

. . - ; Lemma 2 (Decomposition lemmdyf: (K1, K»,...,K,)
jEHloo m; factorizes with respect toK’, L). meets RIP, them factorizes with respect toi;, Ko, ..., K,.)
if and only if it recursively factorizes with respect to
Multiple factorization: Consider a finite system of (K1, Ka, ..., Kp).
nonempty subset&(;, K, ..., K, of a setN. We say that | the literature (e.g. in [8]), measures factorizing with
7 factorizes with respect toK, K», ..., K) if there existr  regpect to systems of sets meeting (after a possible réogier
functions ¢ =1,2,...,7) RIP are usually called decomposable measures. In this text
we will say that they aredecomposable with respect to
i : X, — [0,+00), (K1, Ko, ..., K,). As a direct consequence of what have been
h that for afl said before, one can see that a distribution decomposatile wi
such that for afl = € X, u..uxk, respect to sequendes<;, Ko, ..., K,) can be expressed as a
” product of its conditional marginals
HEULUK, (z) = Hgbl(le?) LK1U.LUK, ()
1=1

T
— HWLKi (leT;\(Klu...UKT;,l)|x1Km(K1U...UK1;,1))’

i=1

Remark: In this general case one can (using Lemma 1)
derive a system of conditional independence relationgdvali
for a measurer factorizing with respect t¢K, K, ..., K,) and that the limit a convergent sequence of measures decom-
but no assertion that could be considered a direct analogyp@sable with respect tX, Ko, ..., K,) is also decompos-
any of the preceding Corollaries holds true. This is why thable with respect to the same sequence.

following type of factorization is often considered. Remark:It is important to realize that since two set&, L)

always meet RIP, all the presented definitions coincide & on
considers factorization with respect to only two sets. Tikis

4Sometimes, the validity of this equality is required only those points
x for which 7K1V -UEr () > 0, SRead(K; U...U Kp) as0.



perhaps why not many authors distinguish different types of IV. INDEPENDENCE AND FACTORIZATION
factorization. IN DEMPSTER SHAFER THEORY

Remark: The presented list of types of factorization is not Let us now present a generally accepted notion of indepen-
comprehensive. For example, one can consider a margidenhce ( [1], [10], [12]5.

factorization requiring that the respective measure isjugly Definition 1: Let m be a basic assignment a¥y and
given by a system of its marginals; for example as a maximul, L C N be nonempty disjoint. We say that groups of
entropy extension. variablesX i and X, areindependerftwith respect to basic

. DEMPSTERSHAFER THEORY - NOTATION assignmentn (in notationK 1L L [m]) if for all A C Xxyr,

As in the previous section, we consider a finiteltidimen- mUl(4)
sional frame of discernment MM (AVK)Y L (ALL) i A = ALK x ALE,
Xy =Xy xXpx...x X, 1o otherwise.

and its subframesX . ConsiderK, L. C N and M C K.
In addition to a projection of a set we will need also an  There are several generalizations of this notion of inde-
opposite operation, which will be called a join. Byj@n of pendence corresponding to conditional independence (gee f
two setsA C X and B C X, we will understand a set example papers [2], [3], [7], [10], [12]). In this rEcjext we Wil
K L use the generalization, which was introduced ir¥ [&hd [6],
AoB={zecXxu:z" €4 & a}" € B}, and which differs from the notion of conditional independen
Let us note that i’ and L are disjoint, themd® B = Ax B, used, for example, by Shenoy [10] and Studeny [12] (and
if K=LthenA® B=ANB. which is the same as theonditional non-interactivityused
In view of this paper it is important to realize thatife by Ben Yaghlaneet al. in [2]).
C C Xgur, thenztX € CH andz!l € C1E, which means  Definition 2: Let m be a basic assignment dKy and
that always K,L,M C N be disjoint, K # () # L. We say that groups
ccctieoith. of variablesX ;- and X, are conditionally independent given

However, and it is of great importance in this paper, ifim With respect tom (and denote it bgf}\i} L|ML[TJT\L4])v if
does not mean that’ = C'X @ C'L. For example, con- O @y A € Xxurun such thatd = AU @ AL the

sidering 3-dimensional frame of discernmeX; 55, with equality

X; = {aja;} for all three i = 1,2,3, and C = mHEOEUM () WM (AL
{alaf?ls;?azai:;sgag} one gets _ leUAI(AiKU]W) ) mlLU]W(AlLU]W)
C o4l @ CH2t = {ajag, aras} @ {asas, asa -
{ara, 172} {azas - 2 73} - holds true, andn!XYEVUM(4) = ( for all the remaining4d C
= {G1G2G3,G1(I2G3,G1(I2G3,G1(I2G3} X xurunm, for which A # AVEUM o ALLUM
C. . . .
< Notice that for M = () the concept coincides with

In Dempster-Shafer theory of evidence several measufgstinition 1 (and therefore also with the definition used in
are used to model the uncertainty (belief, plausibility anfé], [10], [12]). In addition to this, it was proven in [6]
commonality measures). All of them can be defined with that this notion meets all the properties required from the
help of another set function called laasic (probabilityor notion of conditional independence, so-callgemigraphoid
belief) assignment: on X, i.e. properties( [8], [12], [13]):

m:P(Xg) — [0,1] (Al) K L L|M[m] = L 1 K|MIm]
for which ZAng m(A) = 1. Since we will consider in this (A2) K ILLUM|J[m] = K 1L M|J[m]

paper only normalized basic assignments we will assume th
m(0) = 0. SetA C Xk is said to be docal elemenof m if 6&3) KALLUM|J[m = K1 L[MUJ[m]

m(A) > 0. (Ad) (K LLIMUJ[m]) & (K 1L M|[J[m])

Analogously to marginal probability measures, we consider o = KALLUM[J[m]
also marginal basic assignments sof defined onX,. For It should be highlighted here that all these propertiesh(bot
eachK C N a marginal basic assignmendf m is defined the semigraphoid properties and the fact that the notion is

(for eachB C X): a generalization of the unconditional independence) hold
le(B) = Z m(A). SNotice, however, that the presented definition is not stahdawas proved
ACX y in [6] that this definition is equivalent to that used by mos$tauthors,
AlK_pB who use the definition based on application of conjunctivelzioation rule

. . . . . non-normalized Dempster’s rule of combination) [1], [16f commonali
Considering two basic assignments; and my defined on §uncﬂon [12]. P ) 11, 1ot v

X andXj, respectively, we say that they apeojectiveif "Couso et al. [3] call this independendedependence in random sets
LKNL LKNL Klir [7] ( non-interactivity)).
my = My : 8In this paper the notion was called conditional irrelevance



true also for the notion employed in [2], [10], [12]). The Theorem (Factorization lemma)Let K, C N be
advantage of our term defined in Definition 2 is that ihonempty.m factorizes with respect t¢K, L) if and only
enables us to prove (among others also) Factorization lemiha

in Dempster-Shafer theory of evidence, which is presented K\L L L\K|KNL][m].

below as Theorem. . . .
) ) . . .. Proof: First notice that ford ¢ Xz, for which4 # AKX @
Before introducing the definition of simple factonzatlon,AlL’ m(A) = 0 in both situations: whemn, factorizes with

let us illustrate the main difference between factorizatio
probability and Dempster-Shafer theories with the help Ofrgspgct .tO(K.’ L)_and whenK'\ L 1L L\ K[KNL [m]. So,
simple example. proving implication

Example: Consider just2-dimensional frame of discern- K\L L L\K|KNL [m)]

ment — m factorizes with respect toK, L)
Xy x Xy = {a1, a1, 41} x {as, 83, 2} is trivial. It is enough to take
Probability measurer on X; x X, factorizes if there exist B(A) = mE(A)

functions¢ andt such that

m“‘(B) :
7T(:C17x2) = (b(xl) . 17[](x2) w(B) _ miKﬁL(BiKmL)' if leﬂL(BiKﬂL) > O’
] o . . 0 otherwise
It means that to defin® probabilitie$ of the 2-dimensional

measurer one has to givé values of functionp and3 values for all A € Xg andB € Xp. _ .
of function (3 x 3 = 9). However, considering Dempster- To prove the opposite implication consider two functighs

Shafer theory, there a®’ — 1 = 511 non-empty subsets of andz_ﬁ meeting t_he properties required t_)y DefinitioPK3, and
X, x X», and therefore a basic assignment should be defifg@'sider an arbitraryl C Xxur, for which A = A% @
by'® 511 numbers. In this case, however, both factor functio g Before we start co.mputlng the necessary marginal basic
¢ and, being set functions oiX,; and X, respectively, are 2SSignments let us realize that

dhe_fined with7 _numb;rs ?(IQ has?hnonemptyfsuhbsetsl). Fro;n ) (B CXkuL: (B=DB" @ BE)&(BY = A))

this, one can immediately see that some of the values of the ALK (O C LKAL _ ALKNL

resulting join basic assignment must be defined in anothgr wa =47 e C (CCXk(C =4 )}
than just product of factors. Nevertheless, this requirgrisan When computing

harmony with the property we expect from a factorizing basic VK LK | KUL
assignment. In probability theory, any probability measur m T (AT) = Z m (B)
factorizing onX; x X, is a product of two independent I

dimensional measures. In Dempster-Shafer theory, anyg basi ) VK ool L
assignmentmn, for which 1 1L 2 [m], has at mosti9 focal We can sum up over only thodg, for which B = B** @ B*~,
elements, because there a2 subsetsd of X, x X, for because ifB # Bl @ B!F, as it follows from Definition 3,

which A # A1} x AH2} (and thereforen(A) = 0 for these "(B) = 0. So we get

A, due to Definition 1). mVE (AV) = Z mMEIL(B)
Generalizing the ideas from this example to overlapping set E’i%fifx;

of indices we came up with the following notion of simple
factorization in Dempster-Shafer theory of evidence. Z 1) iy
= P(B**) - ¢(B
Definition 3 (Simple factorization)Consider two BCX oL
nonempty setd<, . C N. We say that basic assignment Blr=AlK
factorizes with respect t0i, L) if there exist two nonnegative B=EBl¥@B!
set functions
= H(A) -9 (C)
¢:PXg) —[0,4), ¢:PXr)— [0,+00), C§L
ClKNL_ALlKNL
such that for allA C Xxur

K
B(AVK) (ALY if A= ALK @ ALL =0 > WO
leuL(A) _ CCXy
0 otherwise. ClENL=AlKNL
Computing analogoushy!L(AlL) one gets
9More exactly: it is enough to determirge probabilities; the last can be
computed because all of them must sum ug to miE (ALY = (ALY . Z ¢(D).
10Again, since we consider only normalized basic assignmenes value DCX g

can be computed from the remainidg0 numbers. DIKNL_ ALKNL



Now, we have to compute: ! X"E (ALK For this, realize  Corollary 3: Let my,mo,ms,... be a sequence of basic
again that assignments each of them factorizing with respectAoL).

If this sequence is convergent then also the limit basigassi
. _ plK 1L IKNL _ 4lKNL
{BECXkur: (B=B" @B 7)&(B =4 )} ment lim m, factorizes with respect t0K, L).

={peC:(Dc XK)&(CKQLXL) . . Proof Since the considered frame of discernmXnt is finite,
&(DYENE = CHENE = ALKNEYY it s obvious that convergence ofiy, ma, ... implies also
. . the convergence of all its marginals, i.e. alstm m'*,
Using this we get j—too J
LKNL )
U KOL(4LKNL) EToom and hm L . The assumption of factoriza
tion of all m; says that due to Theorem,
— Z mEYL(B) mﬁKuL .mijL _ m}K 'mﬁLv
BCXkuL
BIKNL=ALKNL and therefore also
li LKUL LKNL _ li LK li \L
= Y eBE) . w(BY) g Ty jo M T
BCXkurL 0

BLKNL_ALlKNL
B=BlKgBlL
From the point of view of possible applications it is impor-

= Z Z #(D) -(0) tant to realize that the notion of simple factorizationaunced
DCXx ccX,, in Definition 3 is a direct analogy to the probabilistic simpl
DIKNL_ALKNL  CLENL_ALKNL factorization. Though we do not know whether one can

introduce a meaningful analogy to the multiple factoriaati
within Dempster-Shafer theory of evidence, the analogies t

= Z #(D) | - Z y(C) | . recursive factorization and decomposition are straighidod.
Dmfgcﬁxm cmnCL%)iﬁKm Definition 4 (Recursive factorization)Consider a finite se-

o o ) guence of nonempty setd¥(y,Ko,...,K, C N. We
To finish the proof it is enough to substitute the corresay that basic assignment. factorizes with respect to
sponding expressions computed above into the formula frqmrl’KQ’ ..., K,) if for eachi = 2,...,7 m (simply) fac-

Definition 2, which is in this context in the form torizes with respect to the paii; U... U K;_1, K;).
KUL KNL KNL K K L L
m! (4) - mt (4 ) = mtE (A miath). Definition 5 (Decomposability)Consider a finite sequence
Doing this we get of nonempty setsk;, Ko,..., K, C N meeting RIP. We
say that basic assignment is decomposable with respect to
(K4, Ko, ..., K,) if it recursively factorizes with respect to

this sequence.

mLKUL(A) . mLKﬂL(ALKﬂL)

— (;5(A1K) . ’L/J(ALL) . Z ¢(D) V. SPACE-SAVING POWER OF FACTORIZATION

DCXx To persuade the reader that the notion of factorization is
DIENE=ALENE not interesting only from the theoretical point of view but
that it is important also for applications, let us illusgahe
space-saving power of factorization (decomposability vy
Z ¥(O) | simple examples. As it can be seen even from the described
CLKSLQZ)ZLLKF\L trivial situations, the more complex models are taken into
consideration the greater part of the storage demands are
saved.
In Table | we consider four binary and two ternary models.
The first line frame of discernmehtbears the information
K about the dimensionality of the considered basic assigtsnen
PA) - Z $(C) Thus, the fourth line (#f nonempty subsgtshows how many
CWCL%ZLWL numbers define a general basic assignment for the respective
h space of discernment (the maximum number of focal elements
of a general basic assignment). The considered model (plee ty
(ALY Z #(D) | . (_)f factorization/decomposability) is described in the et
PR line (factorizatior). Thus, for example{1}, {2} says that a ba-
DIKNL_ALKNL g Sic assignment simply factorizing with respect({d }, {2}) is

KAL) ittty



SURVEY OF SPACESAVING POWER

Table |

Binary: X; = {a;,a;}

H Ternary:X; = {a;,a;, a;}

frame of discernment X(1,2} X{1,2,3} X(1,2,3,4} X(1,2,3,4} X(1,2} X(1,2,3}
factorization {1}, {2} | {1,2},{2,3} | {1,2,3},{2,3,4} | {1,2},{2,3},{3,4} {1}, {2} {1,2},{2,3}
cardinality of the frame 4 8 16 16 9 27

# of nonempty subsets 15 255 65 535 65 535 511 134 217 727
HA: A=Al gAall} 10 100 10 000 658 50 125 000

# of subsets of each margina| 4 16 256 16 8 512
number of factors 2Xx3=6 2x15 =30 2 x 255 =510 3 X 15 =45 2x7=14 | 2x511=1022
space requirements 0.4 0.118 0.0078 0.00069 0.027 0.0000076

considered in the first column. Similarly1, 2}, {2,3},{3,4} Recall that the presented result is not the only one showing
means that the respective basic assignment recursivetyrfacevidence in favor of this definition. As it was already prasen
izes (is decomposable) with respect({d, 2}, {2,3}, {3,4}). in [2], Studeny showed that the concept of conditional inde
The fifth line ({4 : A = A} @ AH-}|) shows how pendence based on an application of conjunctive combimatio
many subsets of the respective space of discernment meetrtie is not consistent with marginalization. He found two
indicated property. For the last binary case (the fourthicwl) consistent basic assignments for which there does not exist
it means for how many subsets of X, 5 3 4) a common extension manifesting the respective conditional
independence (for more details and Studeny example sge [2]
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space requirements
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that is inversely proportional to the efficiency of the model
the lower the ration the more efficient the respective maoslel i

VI. CONCLUSIONS



