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Abstract—The paper presents our attempt to define the concept
of factorization within the Dempster-Shafer theory of evidence.
In the same way as in probability theory, the introduced concept
can support procedures for efficient multidimensional model
construction and processing. The main result of this paper is a
factorization lemma describing, in the same way as in probability
theory, the relationship between factorization and conditional
independence.
Keywords: Discrete belief functions, conditional indepen-
dence, multidimensional model.

I. I NTRODUCTION

It is well-known that problems of practice require knowl-
edge bases comprising great number of attributes/properties.
Therefore, when considering probabilistic or possibilistic mod-
els one has to cope with distributions of hundreds or even
thousands of dimensions. The dimensionality explosion starts
to be almost hopeless when considering models of Dempster-
Shafer theory [4], [9], where the basic assignment is not a point
function, like distributions in probability/possibilitytheories,
but a set function. This is why any space-saving technique for
model representation and/or processing [11] is in Dempster-
Shafer theory of such a great importance.

Speaking about probability theory, it became widely known
that a substantial decrease of computational complexity was
achieved with the help of models taking advantage of the con-
cept of conditional independence. However, studying properly
probabilistic graphical Markov models one can realize thatit
is not the notion ofconditional independencethat makes it
possible to represent these models efficiently. The efficiency
is based on afactorization, which in probability theory (due
to factorization lemmapresented here as Lemma 1) coincide
with the conditional independence. Going into details, onecan
notice that the notion of factorization has been introducedin
several different ways in probability theory. The goal of this
paper is to show that factorization can be exploited also in
Dempster-Shafer theory. Before doing this, we briefly analyze
the notion of factorization in probability theory.

II. PROBABILISTIC FACTORIZATION

In this section we will introduce a necessary notation and
recall several notions from probability theory, which served as

1This work was supported by GǍCR under the grant no. ICC/08/E010, and
201/09/1891, and by M̌SMT ČR under grants 1M0572 and 2C06019.

an inspiration for the considerations presented in the further
parts of this paper. Here, we will consider a probability
measureπ on a finite space

XN = X1 × X2 × . . .× Xn,

i.e. an additive set function

π : P(XN ) −→ [0, 1],

for which π(XN ) = 1. For anyK ⊆ N , symbolπ↓K will
denote its respective marginal measure (for eachB ⊆ XK):

π↓K(B) =
∑

A⊆XN

A↓K=B

π(A),

which is a probability measure on subspace

XK =×i∈KXi.

Let us remark that forK = ∅ we getπ↓∅ = 1. Analogous
notation will be used also for projections of points and sets.
For a pointx = (x1, x2, . . . , xn) ∈ XN its projection into
subspaceXK will be denoted

x↓K = (xi,i∈K) ,

and forA ⊆ XN

A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.

Consider a probability measureπ and three disjoint groups
of variablesXK = {Xi}i∈K , XL = {Xi}i∈L andXM =
{Xi}i∈M (K,L,M ⊂ N , K 6= ∅ 6= L). We say thatXK and
XL are conditionally independent givenXM (in probability
measureπ) if for all2 x ∈ XK∪L∪M

π↓K∪L∪M (x) · π↓M (x↓M )

= π↓K∪M (x↓K∪M ) · π↓L∪M (x↓L∪M ).

This property will be denoted by the symbolK ⊥⊥ L |M [π].
In case thatM = ∅ then we say that groups of variablesXK

andXL are (unconditionally3) independent, which is usually
denoted by a simplified notation:K ⊥⊥ L [π].

2As usually, we do not distinguish between a singleton set andits element,
so x stands also for{x}, andx↓K is the only element from{x}↓K .

3Some authors call it marginal independence.



As already mentioned above, the notion of factorization is
introduced in probability theory in several different ways, and
therefore we will use some adjectives to distinguish them from
each other. The properties presented further in this section as
lemmata and corollaries can either be found in [8] or can
be directly deduced as trivial consequences of the properties
presented there.

Simple factorization:Consider two nonempty setsK,L ⊆
N . We say thatπ factorizes with respect to(K,L) if there
exist two nonnegative functions

φ : XK −→ [0,+∞) and ψ : XL −→ [0,+∞),

such that for eachx ∈ XK∪L the equality

π↓K∪L(x) = φ(x↓K) · ψ(x↓L)

holds true.
Lemma 1 (Factorization lemma):Let K,L ⊆ N be

nonempty.π factorizes with respect to(K,L) if and only if
K \ L ⊥⊥ L \K|K ∩ L [π].

Corollary 1: π factorizes with respect to(K,L) if and only
if

π↓K∪L(x) = π↓K(x↓K) · π↓K∪L(x↓L\K |x↓K∩L),

for all x ∈ XK∪L.
Corollary 2: Letπ1, π2, π3, . . . be a sequence of probability

measures each of them factorizing with respect to(K,L).
If this sequence is convergent then also the limit measure
lim

j→+∞
πj factorizes with respect to(K,L).

Multiple factorization: Consider a finite system of
nonempty subsetsK1,K2, . . . ,Kr of a setN . We say that
π factorizes with respect to(K1,K2, . . . ,Kr) if there existr
functions (i = 1, 2, . . . , r)

φi : XKi
−→ [0,+∞),

such that for all4 x ∈ XK1∪...∪Kr

π↓K1∪...∪Kr(x) =

r
∏

i=1

φi(x
↓Ki).

Remark: In this general case one can (using Lemma 1)
derive a system of conditional independence relations valid
for a measureπ factorizing with respect to(K1,K2, . . . ,Kr)
but no assertion that could be considered a direct analogy to
any of the preceding Corollaries holds true. This is why the
following type of factorization is often considered.

4Sometimes, the validity of this equality is required only for those points
x for which π↓K1∪...∪Kr (x) > 0.

Recursive factorization: Consider a finite system of
nonempty subsetsK1,K2, . . . ,Kr of a setN . We say that
π recursively factorizes with respect to(K1,K2, . . . ,Kr) if
for eachi = 2, . . . , r π (simply) factorizes with respect to the
pair (K1 ∪ . . . ∪Ki−1,Ki).

Remark:Using Corollary 1 iteratively one can get a formula
expressing the multidimensional measureπ↓K1∪...∪Kr with the
help of its respective marginals5

π↓K1∪...∪Kr(x)

=

r
∏

i=1

π↓Ki(x↓Ki\(K1∪...∪Ki−1)|x↓Ki∩(K1∪...∪Ki−1)).

So we are getting a trivial assertion saying that ifπ re-
cursively factorizes with respect toK1,K2, . . . ,Kr then it
also factorizes with respect to this system of subsets. Let
us stress that recursive factorization is much stronger than
multiple factorization. For example, for recursive factorization
an analogy to Corollary 2 holds true.

Decomposition:We say that a sequenceK1,K2, . . . ,Kr

meets therunning intersection property(RIP) if for all i =
2, . . . , r there existsj, 1 ≤ j < i, such that

Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj.

In case of factorization with respect to a sequence of sets
meeting RIP we are getting the strongest type of factorization.
Namely, in this case multiple and recursive factorizations
coincide.

Lemma 2 (Decomposition lemma):If (K1,K2, . . . ,Kr)
meets RIP, thenπ factorizes with respect to(K1,K2, . . . ,Kr)
if and only if it recursively factorizes with respect to
(K1,K2, . . . ,Kr).

In the literature (e.g. in [8]), measures factorizing with
respect to systems of sets meeting (after a possible reordering)
RIP are usually called decomposable measures. In this text
we will say that they aredecomposable with respect to
(K1,K2, . . . ,Kr). As a direct consequence of what have been
said before, one can see that a distribution decomposable with
respect to sequence(K1,K2, . . . ,Kr) can be expressed as a
product of its conditional marginals

π↓K1∪...∪Kr(x)

=

r
∏

i=1

π↓Ki(x↓Ki\(K1∪...∪Ki−1)|x↓Ki∩(K1∪...∪Ki−1)),

and that the limit a convergent sequence of measures decom-
posable with respect to(K1,K2, . . . ,Kr) is also decompos-
able with respect to the same sequence.

Remark:It is important to realize that since two sets(K,L)
always meet RIP, all the presented definitions coincide if one
considers factorization with respect to only two sets. Thisis

5Read(K1 ∪ . . . ∪ K0) as∅.



perhaps why not many authors distinguish different types of
factorization.

Remark:The presented list of types of factorization is not
comprehensive. For example, one can consider a marginal
factorization requiring that the respective measure is uniquely
given by a system of its marginals; for example as a maximum
entropy extension.

III. D EMPSTER-SHAFER THEORY - NOTATION

As in the previous section, we consider a finitemultidimen-
sional frame of discernment

XN = X1 × X2 × . . .× Xn,

and its subframesXK . ConsiderK,L ⊆ N andM ⊆ K.
In addition to a projection of a setA we will need also an
opposite operation, which will be called a join. By ajoin of
two setsA ⊆ XK andB ⊆ XL we will understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that ifK andL are disjoint, thenA⊗B = A×B,
if K = L thenA⊗B = A ∩B.

In view of this paper it is important to realize that ifx ∈
C ⊆ XK∪L, thenx↓K ∈ C↓K andx↓L ∈ C↓L, which means
that always

C ⊆ C↓K ⊗ C↓L.

However, and it is of great importance in this paper, it
does not mean thatC = C↓K ⊗ C↓L. For example, con-
sidering 3-dimensional frame of discernmentX{1,2,3} with
Xi = {ai, āi} for all three i = 1, 2, 3, and C =
{a1a2a3, ā1a2a3, a1a2ā3} one gets

C↓{1,2} ⊗ C↓{2,3} = {a1a2, ā1a2} ⊗ {a2a3, a2ā3}

= {a1a2a3, ā1a2a3, a1a2ā3, ā1a2ā3}

! C.

In Dempster-Shafer theory of evidence several measures
are used to model the uncertainty (belief, plausibility and
commonality measures). All of them can be defined with the
help of another set function called abasic (probability or
belief) assignmentm on XK , i.e.

m : P(XK) −→ [0, 1]

for which
∑

A⊆XK
m(A) = 1. Since we will consider in this

paper only normalized basic assignments we will assume that
m(∅) = 0. SetA ⊆ XK is said to be afocal elementof m if
m(A) > 0.

Analogously to marginal probability measures, we consider
also marginal basic assignments ofm defined onXN . For
eachK ⊆ N a marginal basic assignmentof m is defined
(for eachB ⊆ XK ):

m↓K(B) =
∑

A⊆XN

A↓K=B

m(A).

Considering two basic assignmentsm1 and m2 defined on
XK andXL, respectively, we say that they areprojectiveif

m
↓K∩L
1 = m

↓K∩L
2 .

IV. I NDEPENDENCE AND FACTORIZATION

IN DEMPSTER-SHAFER THEORY

Let us now present a generally accepted notion of indepen-
dence ( [1], [10], [12])6.

Definition 1: Let m be a basic assignment onXN and
K,L ⊂ N be nonempty disjoint. We say that groups of
variablesXK andXL are independent7 with respect to basic
assignmentm (in notationK ⊥⊥ L [m]) if for all A ⊆ XK∪L

m↓K∪L(A)

=

{

m↓K(A↓K) ·m↓L(A↓L) if A = A↓K ×A↓L,

0 otherwise.

There are several generalizations of this notion of inde-
pendence corresponding to conditional independence (see for
example papers [2], [3], [7], [10], [12]). In this text we will
use the generalization, which was introduced in [5]8 and [6],
and which differs from the notion of conditional independence
used, for example, by Shenoy [10] and Studený [12] (and
which is the same as theconditional non-interactivityused
by Ben Yaghlaneet al. in [2]).

Definition 2: Let m be a basic assignment onXN and
K,L,M ⊂ N be disjoint,K 6= ∅ 6= L. We say that groups
of variablesXK andXL areconditionally independent given
XM with respect tom (and denote it byK ⊥⊥ L|M [m]), if
for anyA ⊆ XK∪L∪M such thatA = A↓K∪M ⊗A↓L∪M the
equality

m↓K∪L∪M(A) ·m↓M (A↓M )

= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds true, andm↓K∪L∪M(A) = 0 for all the remainingA ⊆
XK∪L∪M , for whichA 6= A↓K∪M ⊗A↓L∪M .

Notice that for M = ∅ the concept coincides with
Definition 1 (and therefore also with the definition used in
[2], [10], [12]). In addition to this, it was proven in [6]
that this notion meets all the properties required from the
notion of conditional independence, so-calledsemigraphoid
properties( [8], [12], [13]):

(A1) K ⊥⊥ L |M [m] =⇒ L ⊥⊥ K |M [m]

(A2) K ⊥⊥ L ∪M | J [m] =⇒ K ⊥⊥M | J [m]

(A3) K ⊥⊥ L ∪M | J [m] =⇒ K ⊥⊥ L |M ∪ J [m]

(A4) (K ⊥⊥ L |M ∪ J [m]) & (K ⊥⊥M | J [m])
=⇒ K ⊥⊥ L ∪M | J [m]

It should be highlighted here that all these properties (both
the semigraphoid properties and the fact that the notion is
a generalization of the unconditional independence) hold

6Notice, however, that the presented definition is not standard. It was proved
in [6] that this definition is equivalent to that used by most of authors,
who use the definition based on application of conjunctive combination rule
(non-normalized Dempster’s rule of combination) [1], [10], or commonality
function [12].

7Couso et al. [3] call this independenceindependence in random sets,
Klir [7] ( non-interactivity)).

8In this paper the notion was called conditional irrelevance.



true also for the notion employed in [2], [10], [12]). The
advantage of our term defined in Definition 2 is that it
enables us to prove (among others also) Factorization lemma
in Dempster-Shafer theory of evidence, which is presented
below as Theorem.

Before introducing the definition of simple factorization,
let us illustrate the main difference between factorization in
probability and Dempster-Shafer theories with the help of a
simple example.

Example: Consider just2-dimensional frame of discern-
ment

X1 × X2 = {a1, ā1,
∗
a1} × {a2, ā2,

∗
a2}.

Probability measureπ on X1 × X2 factorizes if there exist
functionsφ andψ such that

π(x1, x2) = φ(x1) · ψ(x2).

It means that to define9 probabilities9 of the 2-dimensional
measureπ one has to give3 values of functionφ and3 values
of function ψ (3 × 3 = 9). However, considering Dempster-
Shafer theory, there are29 − 1 = 511 non-empty subsets of
X1 ×X2, and therefore a basic assignment should be defined
by10 511 numbers. In this case, however, both factor functions
φ andψ, being set functions onX1 andX2, respectively, are
defined with7 numbers (Xi has7 nonempty subsets). From
this, one can immediately see that some of the values of the
resulting join basic assignment must be defined in another way
than just product of factors. Nevertheless, this requirement is in
harmony with the property we expect from a factorizing basic
assignment. In probability theory, any probability measure
factorizing onX1 × X2 is a product of two independent1-
dimensional measures. In Dempster-Shafer theory, any basic
assignmentm, for which 1 ⊥⊥ 2 [m], has at most49 focal
elements, because there are462 subsetsA of X1 × X2, for
whichA 6= A↓{1}×A↓{2} (and thereforem(A) = 0 for these
A, due to Definition 1).

Generalizing the ideas from this example to overlapping sets
of indices we came up with the following notion of simple
factorization in Dempster-Shafer theory of evidence.

Definition 3 (Simple factorization):Consider two
nonempty setsK,L ⊆ N . We say that basic assignmentm
factorizes with respect to(K,L) if there exist two nonnegative
set functions

φ : P(XK) −→ [0,+∞), ψ : P(XL) −→ [0,+∞),

such that for allA ⊆ XK∪L

m↓K∪L(A) =

{

φ(A↓K) · ψ(A↓L) if A = A↓K ⊗A↓L

0 otherwise.

9More exactly: it is enough to determine8 probabilities; the last can be
computed because all of them must sum up to1.

10Again, since we consider only normalized basic assignmentsone value
can be computed from the remaining510 numbers.

Theorem (Factorization lemma):Let K,L ⊆ N be
nonempty.m factorizes with respect to(K,L) if and only
if

K \ L ⊥⊥ L \K |K ∩ L [m].

Proof: First notice that forA ⊂ XK∪L, for whichA 6= A↓K⊗
A↓L, m(A) = 0 in both situations: whenm factorizes with
respect to(K,L) and whenK \L ⊥⊥ L \K |K ∩L [m]. So,
proving implication

K \ L ⊥⊥ L \K |K ∩ L [m]

=⇒ m factorizes with respect to(K,L)

is trivial. It is enough to take

φ(A) = m↓L(A),

ψ(B) =

{

m↓L(B)
m↓K∩L(B↓K∩L)

if m↓K∩L(B↓K∩L) > 0,

0 otherwise,

for all A ⊆ XK andB ⊆ XL.
To prove the opposite implication consider two functionsφ

and ψ meeting the properties required by Definition 3, and
consider an arbitraryA ⊂ XK∪L, for which A = A↓K ⊗
A↓L. Before we start computing the necessary marginal basic
assignments let us realize that

{B ⊆ XK∪L : (B = B↓K ⊗B↓L)&(B↓K = A↓K)}

= {A↓K ⊗ C : (C ⊆ XL)&(C↓K∩L = A↓K∩L)}.

When computing

m↓K(A↓K) =
∑

B⊆XK∪L

B↓K=A↓K

m↓K∪L(B)

we can sum up over only thoseB, for whichB = B↓K⊗B↓L,
because ifB 6= B↓K ⊗ B↓L, as it follows from Definition 3,
m(B) = 0. So we get

m↓K(A↓K) =
∑

B⊆XK∪L

B↓K=A↓K

m↓K∪L(B)

=
∑

B⊆XK∪L

B↓K=A↓K

B=B↓K⊗B↓L

φ(B↓K) · ψ(B↓L)

=
∑

C⊆XL

C↓K∩L=A↓K∩L

φ(A↓K) · ψ(C)

= φ(A↓K) ·
∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C).

Computing analogouslym↓L(A↓L) one gets

m↓L(A↓L) = ψ(A↓L) ·
∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D).



Now, we have to computem↓K∩L(A↓K∩L). For this, realize
again that

{B ⊆ XK∪L : (B = B↓K ⊗B↓L)&(B↓K∩L = A↓K∩L)}

= {D ⊗ C : (D ⊆ XK)&(C ⊆ XL)

&(D↓K∩L = C↓K∩L = A↓K∩L)}.

Using this we get

m↓K∩L(A↓K∩L)

=
∑

B⊆XK∪L

B↓K∩L=A↓K∩L

m↓K∪L(B)

=
∑

B⊆XK∪L

B↓K∩L=A↓K∩L

B=B↓K⊗B↓L

φ(B↓K) · ψ(B↓L)

=
∑

D⊆XK

D↓K∩L=A↓K∩L

∑

C⊆XL

C↓K∩L=A↓K∩L

φ(D) · ψ(C)

=









∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D)









·









∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C)









.

To finish the proof it is enough to substitute the corre-
sponding expressions computed above into the formula from
Definition 2, which is in this context in the form

m↓K∪L(A) ·m↓K∩L(A↓K∩L) = m↓K(A↓K) ·m↓L(A↓L).

Doing this we get

m↓K∪L(A) ·m↓K∩L(A↓K∩L)

= φ(A↓K ) · ψ(A↓L) ·









∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D)









·









∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C)









,

m↓K(A↓K) ·m↓L(A↓L)

=









φ(A↓K) ·
∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C)









·









ψ(A↓L) ·
∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D)









.

⊓⊔

Corollary 3: Let m1,m2,m3, . . . be a sequence of basic
assignments each of them factorizing with respect to(K,L).
If this sequence is convergent then also the limit basic assign-
ment lim

j→+∞
mj factorizes with respect to(K,L).

Proof: Since the considered frame of discernmentXN is finite,
it is obvious that convergence ofm1,m2, . . . implies also
the convergence of all its marginals, i.e. alsolim

j→+∞
m

↓K
j ,

lim
j→+∞

m
↓L
j and lim

j→+∞
m

↓K∩L
j . The assumption of factoriza-

tion of all mj says that, due to Theorem,

m
↓K∪L
j ·m↓K∩L

j = m
↓K
j ·m↓L

j ,

and therefore also

lim
j→+∞

m
↓K∪L
j · lim

j→+∞
m

↓K∩L
j = lim

j→+∞
m

↓K
j · lim

j→+∞
m

↓L
j .

⊓⊔

From the point of view of possible applications it is impor-
tant to realize that the notion of simple factorization introduced
in Definition 3 is a direct analogy to the probabilistic simple
factorization. Though we do not know whether one can
introduce a meaningful analogy to the multiple factorization
within Dempster-Shafer theory of evidence, the analogies to
recursive factorization and decomposition are straightforward.

Definition 4 (Recursive factorization):Consider a finite se-
quence of nonempty setsK1,K2, . . . ,Kr ⊆ N . We
say that basic assignmentm factorizes with respect to
(K1,K2, . . . ,Kr) if for each i = 2, . . . , r m (simply) fac-
torizes with respect to the pair(K1 ∪ . . . ∪Ki−1,Ki).

Definition 5 (Decomposability):Consider a finite sequence
of nonempty setsK1,K2, . . . ,Kr ⊆ N meeting RIP. We
say that basic assignmentm is decomposable with respect to
(K1,K2, . . . ,Kr) if it recursively factorizes with respect to
this sequence.

V. SPACE-SAVING POWER OF FACTORIZATION

To persuade the reader that the notion of factorization is
not interesting only from the theoretical point of view but
that it is important also for applications, let us illustrate the
space-saving power of factorization (decomposability) for very
simple examples. As it can be seen even from the described
trivial situations, the more complex models are taken into
consideration the greater part of the storage demands are
saved.

In Table I we consider four binary and two ternary models.
The first line (frame of discernment) bears the information
about the dimensionality of the considered basic assignments.
Thus, the fourth line (#of nonempty subsets) shows how many
numbers define a general basic assignment for the respective
space of discernment (the maximum number of focal elements
of a general basic assignment). The considered model (the type
of factorization/decomposability) is described in the second
line (factorization). Thus, for example,{1}, {2} says that a ba-
sic assignment simply factorizing with respect to({1}, {2}) is



Table I
SURVEY OF SPACE-SAVING POWER

Binary: Xi = {ai, āi} Ternary:Xi = {ai, āi,
∗
ai}

frame of discernment X{1,2} X{1,2,3} X{1,2,3,4} X{1,2,3,4} X{1,2} X{1,2,3}

factorization {1}, {2} {1, 2}, {2, 3} {1, 2, 3}, {2, 3, 4} {1, 2}, {2, 3}, {3, 4} {1}, {2} {1, 2}, {2, 3}

cardinality of the frame 4 8 16 16 9 27

# of nonempty subsets 15 255 65 535 65 535 511 134 217 727

|{A : A = A↓{..} ⊗ A↓{..}| 10 100 10 000 658 50 125 000

# of subsets of each marginal 4 16 256 16 8 512

number of factors 2 × 3 = 6 2 × 15 = 30 2 × 255 = 510 3 × 15 = 45 2 × 7 = 14 2 × 511 = 1 022

space requirements 0.4 0.118 0.0078 0.00069 0.027 0.0000076

considered in the first column. Similarly,{1, 2}, {2, 3}, {3, 4}
means that the respective basic assignment recursively factor-
izes (is decomposable) with respect to({1, 2}, {2, 3}, {3, 4}).
The fifth line (|{A : A = A↓{..} ⊗ A↓{..}|) shows how
many subsets of the respective space of discernment meet the
indicated property. For the last binary case (the fourth column)
it means for how many subsetsA of X{1,2,3,4}

A = A↓{1,2} ⊗A↓{2,3} ⊗A↓{3,4}.

In any case the fifth line contains the maximum number of
focal elements of a basic assignment factorizing with respect
to the considered model, whereas the last but one line (number
of factors) says the number of parameters by which the model
is actually defined. The last line is a ratio

space requirements=
number of factors

# of nonempty subsets

that is inversely proportional to the efficiency of the model:
the lower the ration the more efficient the respective model is.

VI. CONCLUSIONS

Inspired by factorization in probability theory, we have
introduced an analogous notion in Dempster-Shafer theory of
evidence. We have shown that it meets the basic property
of probabilistic factorization that is anchored in the assertion
widely known asFactorization lemma. We fully agree with the
anonymous reviewer who stated: “The idea of generalizing
the fundamental concepts from probability theory to belief
functions is very natural.” It is simple and natural, and also the
Dempster-Shafer version of Factorization lemma (presented
here in a form of Theorem) is quite natural. This means, how-
ever, that conditional independence in Dempster-Shafer theory
of evidence is to be defined as introduced here in Definition 2.

Recall that the presented result is not the only one showing
evidence in favor of this definition. As it was already presented
in [2], Studený showed that the concept of conditional inde-
pendence based on an application of conjunctive combination
rule is not consistent with marginalization. He found two
consistent basic assignments for which there does not exist
a common extension manifesting the respective conditional
independence (for more details and Studený example see [2]).
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